

Metaeconomics as a framework for multiple criteria decision analysis in management: A restructured analysis

Antanas Buračas

Prof., Member, Lithuanian Academy of Sciences &
World Innovation Foundation
antanas@buracas.com

DOI: [10.2478/rsep-2025-0017](https://doi.org/10.2478/rsep-2025-0017)

Abstract

This paper establishes metaeconomics as a systematic methodological framework for economic analysis that transcends neoclassical limitations through Multiple Criteria Decision Analysis (MCDA). We define metaeconomics as a meta-systemic construct providing general and specific regulative principles, criteria, and analytical tools for addressing complex socioeconomic phenomena involving intangible assets, universal sustainability considerations, and multi-objective optimization. The framework demonstrates empirical relevance through applications in global competitiveness assessment, sustainable development evaluation, and innovation policy analysis. The paper's key contributions: providing a philosophical foundation, methodological innovation, and empirical validation of the use of MCDA as a practical toolkit for addressing 21st-century economic challenges is the core message. The author attempts to bridge high-level philosophical critiques with concrete, operationalizable methods, making a compelling case for a more holistic and quality approach to economic analysis and management.

Keywords: Meta economics, Management Methods, Multiple Criteria Decision Analysis (MCDA).

Jel codes: B40, C44,D70,O31

1. Introduction : Problem Identification and Neoclassical Limitations

1.1. The Complexity Challenge in Contemporary Economics

The escalating complexity of the global economy challenges traditional analytical frameworks. Three fundamental shifts define this complexity: the emergence of knowledge-intensive economic activities, the imperative of universal sustainable development, and the proliferation of intangible assets as primary value drivers. These phenomena expose critical limitations in neoclassical economic paradigms that assume rationality, market clearing mechanisms, and easily quantifiable variables. The critical reference point validates the need for a *more comprehensive approach to measuring economic performance and social progress* (Stiglitz et al., 2009). E.F. Schumacher (1973) also provides a foundational critique of conventional, materialist economics and the need for a human-centered approach.

The neoclassical synthesis, despite its analytical elegance, faces persistent criticism for its restricted explanatory scope in contemporary economic realities. The homo economicus paradigm and singular reliance on aggregate measures like GDP prove inadequate for addressing multidimensional challenges of the 21st century. Traditional marginalist optimization cannot effectively handle the management of global public goods, valuation of intellectual and natural capital, or formulation of sustainable development strategies.

1.2 Measurement and Evaluation Gaps

Significant fields and aspects of economic activity remain unmeasured due to methodological limitations. Creative activities, many intellectual service sectors, and knowledge-based processes resist conventional quantification. The value of intangible assets—ideas, inventions, cultural products—cannot be captured by measuring their material manifestations alone. Similarly, socioeconomic effects of services like healthcare and education are often inappropriately equated with their social costs rather than their value creation.

1.3 The Need for Methodological Innovation

Contemporary economic challenges require analytical frameworks extending beyond efficiency-focused, purely quantitative approaches. The integration of normative and qualitative factors into economic analysis demands methodological innovation, meta-systemic approach (Menger, 1954) that can handle:

- *Incommensurable values*: Social utility, environmental health, and creative potential resist direct quantitative comparison.
- *Dynamic value hierarchies*: Economic preferences change over time and context.
- *Complex interdependencies*: Non-linear relationships between economic variables.
- *Multi-stakeholder objectives*: Conflicting goals requiring structured trade-off analysis.

2. Ontological and Epistemological Foundations

2.1 Ontological Framework: The Nature of Economic Reality

The Fundamental Ontological Challenge. Economic analysis requires explicit assumptions about the nature of economic reality. Traditional economics suffers from ontological confusion, treating fundamentally different types of entities—material goods, social relationships, and institutional structures—as equivalent analytical objects. This creates systematic distortions in understanding economic phenomena.

Social Construction and Objective Properties. Economic phenomena emerge from collective human action but acquire objective properties through institutionalization. Markets, money, and property rights exist as social constructs that become real through collective recognition and enforcement. This dual nature—socially constructed yet objectively constraining—requires analytical frameworks capable of handling both dimensions simultaneously.

Temporal Ontology and Dynamic Systems. Economic entities exist across different time horizons and evolve through path-dependent processes. Capital, knowledge, and institutions cannot be understood as

static objects but must be analyzed as dynamic systems with emergent properties. This temporal dimension necessitates analytical approaches that can model evolutionary and adaptive processes (Lynne, 2003, 2024).

Emergent Properties and System-Level Phenomena. Complex economic systems exhibit properties that cannot be reduced to individual components. National competitiveness, systemic risk, and innovation ecosystems represent emergent phenomena requiring holistic rather than reductionist analytical approaches. The ontological recognition of emergence justifies methodological frameworks operating at higher logical orders than conventional economic analysis.

2.2 Epistemological Framework: Knowledge Construction in Economics

Hierarchical Epistemology and Meta-Level Analysis. Economic knowledge operates at multiple levels, from empirical observations to theoretical generalizations to methodological principles. A hierarchical epistemological framework recognizes that different analytical levels require different validation criteria and that higher-order principles govern the construction and evaluation of lower-level knowledge claims (Buracas, 1985, 2004).

Knowledge Pluralism and Integration. Economic understanding requires integration of diverse knowledge types: quantitative data, qualitative assessments, expert judgments, and stakeholder preferences. Each represents different epistemological categories with distinct validation requirements. Effective methodology must provide principled frameworks for combining these heterogeneous knowledge forms without inappropriate reduction.

Contextual Validity and Reflexivity. Economic knowledge claims must be evaluated relative to specific analytical purposes and institutional contexts. Unlike natural sciences, economic analysis faces reflexivity challenges where knowledge affects the phenomena studied. Methodological frameworks must account for this reflexive relationship and the context-dependent nature of economic validity.

Critical Realism and Methodological Sophistication. The epistemological foundation adopts critical realist principles recognizing that economic reality exists independently of our knowledge while acknowledging that our access to this reality is mediated through theoretical frameworks and measurement instruments (Buracas et al., 2025). This position justifies sophisticated methodological approaches that can navigate between naive empiricism and radical relativism.

3. Core Postulates and Principles

Having established the ontological and epistemological foundations, we can now articulate the core postulates that structure the metaeconomic framework. These postulates emerge from the philosophical foundations and provide operational principles for analytical practice.

3.1 Fundamental Postulates

Meta-Systemic Ordering. Metaeconomics functions as a system of higher logical order, analogous to metalogic or metamathematics. It specifies regulative principles, criteria, and interconnections for economic research while ensuring epistemological and ontological consistency. This establishes metaeconomics as a methodological framework rather than a competing economic theory.

Ontological Duality of Economic Reality. Economic phenomena represent fundamental expressions of human social relationships that cannot be fully captured by static, material-based categories alone. The failure to reconcile material (object-oriented) and social categories constitutes the core methodological problem in conventional economics (Roy, 1996). This duality necessitates analytical approaches capable of handling both dimensions simultaneously.

Subsystemic Co-Substantiation. Economic effectiveness requires continuous, dynamic synchronization between normative-value subsystems (goals, criteria, social preferences) and realization-applied subsystems (means, policies, technologies). Unforeseen consequences in complex systems arise from failures in this synchronization, demanding predictive and regulative rather than merely descriptive frameworks.

Temporal-Contextual Value. Economic value is not absolute but represents a dynamic, path-dependent phenomenon determined by position within temporal accounting systems and influenced by chronological boundaries of causal relationships. This requires robust methodologies for intertemporal comparison and dynamic preference modeling (Lynne, 2020).

Methodological Adaptability. Methodological positions must undergo inversion (re-application across analytical levels) and intraversion (internal transformation) as they encounter new phenomena and data. The transition between research levels requires principled criteria for methodological adaptation and tool selection.

3.2 General Regulative Principles

These postulates generate operational principles organized into three thematic clusters that guide analytical practice and provide criteria for methodological choice.

Systemic Complexity Principles

- *Internal Structuralism:* Acknowledging intricate interdependencies within economic systems.
- *Nonlinearity:* Recognizing dynamic, non-proportional systemic interactions.
- *Emergence and Synergy:* Understanding that interactive integrity yields multiplicative rather than additive effects.
- *Negentropic Orientation:* Focusing on systems that evolve toward increasing order, countering entropic decay.

Value and Purpose Principles

- *Multiplicity of Values:* Explicitly acknowledging diverse non-material values and goals driving economic activity.
- *Coherence:* Demanding consistency across structural levels from normative goals to implementation practices.
- *Taxonomic Ranking:* Establishing clear hierarchies and weights for criteria in multi-objective contexts.

Adaptation and Evaluation Principles

- *Equifinality:* Recognizing that systems can reach specified end-states through different pathways and initial conditions.
- *Evaluative Congruence:* Ensuring consistency between different socioeconomic systems and their analytical assessments.
- *Ambivalence Management:* Accounting for contradictory attitudes and finding robust solutions under uncertainty.

4. MCDA Integration and Methodology

The philosophical foundations and core postulates establish the theoretical justification for Multiple Criteria Decision Analysis (MCDA) as the primary operational toolkit for metaeconomic analysis. MCDA provides the structured, transparent methodology required to operationalize metaeconomic principles in practical decision-making a/o management contexts. The notion of *hierarchical epistemology and knowledge pluralism* (Kickert & Van Gigch, 1979) directly justifies why MCDA is the appropriate toolkit for contemporary management. MCDA's ability to integrate quantitative data, qualitative assessments, and expert judgments is not merely a practical feature; it is a principled response to the epistemological challenge of combining diverse forms of knowledge without reducing them to a single metric (Greco et al., 2016). The discussion of MCDA's ability to manage complexity, and facilitate stakeholder engagement is accurate and well-argued by Belton & Stewart (2002), in Social Multi-Criteria Evaluation (2025).

4.1 Theoretical Alignment Between Metaeconomics and MCDA

Embracing Multiplicity. Unlike traditional cost-benefit analysis that attempts to monetize non-market goods and services (Saarikoski et al., 2016), MCDA handles diverse criteria in their native units. The inclusion of *incommensurable values* suppose evaluating diverse criteria in their native units, thus providing a methodological solution to a fundamental measurement problem (Greco et al., 2016). This aligns with the metaeconomic principle of multiplicity of values, allowing formal analysis of financial, social, environmental, and technical factors without inappropriate reduction.

Integration of Qualitative and Quantitative Information. MCDA methods formally incorporate both objective measurable data and subjective qualitative judgments. This operational capacity directly implements the epistemological framework's requirement for integrating heterogeneous knowledge types while maintaining analytical rigor.

Structured Complexity Management. The MCDA process forces explicit definition of objectives, criteria, and priorities, making decision rationale transparent and defensible. This implements the metaeconomic emphasis on coherence and evaluative congruence while managing systemic complexity through structured decomposition.

Stakeholder Engagement and Democratic Legitimacy. By making trade-offs explicit, MCDA provides common language for diverse stakeholders to debate and build consensus. This addresses the metaeconomic challenge of co-substantiation between normative and applied subsystems through participatory methodology.

4.2 MCDA Problem Structure and Generic Process

Core Components. Every MCDA problem contains five essential elements that operationalize metaeconomic principles applicable in managerial practice:

- *Alternatives (A):* Finite set of decision options representing different pathways to system goals
- *Criteria (C):* Comprehensive, non-redundant, measurable attributes reflecting multiple values and objectives
- *Weights (w):* Numerical values reflecting relative importance, implementing taxonomic ranking principles
- *Performance Matrix (X):* Systematic evaluation of alternatives against criteria, integrating diverse information types
- *Aggregation Rules:* Mathematical procedures for combining information while respecting ontological distinctions

Generic Process Implementation: The MCDA process implements metaeconomic principles through six sequential stages:

1. *Problem Structuring:* Collaborative definition of context, goals, alternatives, and criteria with stakeholder engagement
2. *Performance Evaluation:* Systematic data gathering implementing knowledge pluralism through quantitative modeling, expert surveys, and qualitative assessments
3. *Preference Elicitation:* Determining criteria weights through structured methods ensuring coherence and transparency
4. *Aggregation and Ranking:* Applying mathematical methods while respecting ontological constraints and value hierarchies
5. *Sensitivity and Robustness Analysis:* Testing result stability across parameter variations, implementing ambivalence management
6. *Decision Communication:* Presenting recommendations with full transparency about assumptions and trade-offs

4.3 Taxonomy of MCDA Methods and Metaeconomic Applications

Value Measurement Models (Full Aggregation). These methods are often used to create composite indices because they provide aggregate performance across all criteria into comprehensive scores, appropriate when complete compensation between criteria is acceptable (Zavadskas & Turskis, 2011):

- *Simple Additive Weighting (SAW):* Direct implementation of weighted aggregation for constructing composite indices like Global/World Competitiveness Index;
- *Analytic Hierarchy Process (AHP):* Hierarchical structuring with pairwise comparisons for complex stakeholder engagement in innovation policy selection (Saaty & Vargas, 2012).

Outranking Methods (Partial Aggregation). These methods have unique ability to handle incomparability, which is particularly useful for public policy decisions where a trade-off is not always a viable option (Roy, 1996). They build preference relationships without requiring complete trade-offs, suitable for incommensurable values:

- *ELECTRE:* Incorporating veto thresholds for handling societal constraints that cannot be traded off, such as environmental impact assessment;
- *PROMETHEE:* Flexible preference modeling for complex strategy evaluation like sustainable development pathways.

Reference Point Methods. These methods compare alternatives to predefined targets, implementing benchmarking and improvement strategies, identify their role in goal-oriented analysis, which is highly relevant for management and policy appraisal (Triantaphyllou, 2000; Use of Multi-Criteria Decision Analysis, 2024):

- *TOPSIS:* Measuring distance from ideal solutions for competitiveness benchmarking and gap analysis;
- *Goal Programming:* Optimizing achievement of multiple targets simultaneously while managing trade-offs.

5. Empirical Applications and Validation

The metaeconomic framework demonstrates practical relevance through successful application in prominent international assessment systems. These applications validate the theoretical framework while illustrating its operational effectiveness in addressing complex policy challenges. The principles of *Multiplicity of Values* and *Taxonomic Ranking* are direct antecedents to the MCDA process, where criteria and their respective weights are explicitly defined and justified (Saaty & Vargas, 2012; Zeleny, 1982).

5.1 Global Competitiveness and Innovation Assessment

Integrated Approach to Complex Indices. The World Economic Forum's Global Competitiveness Index (now IMD World Competitiveness Ranking) exemplifies metaeconomic methodology by evaluating national competitiveness through dozens of variables grouped into pillars including institutions, infrastructure, ICT adoption, skills, and innovation capability. This approach transcends GDP-focused analysis by providing holistic diagnostic capabilities for productive potential assessment.

The Global Innovation Index (GII, 2024) and Global Talent Competitiveness Index (GTCI, 2025) demonstrate similar methodological sophistication. The GTCI evaluates national capacity to attract, grow, and retain talent through pillars including vocational skills and global knowledge skills. Analysis reveals that social processes and reward levels drive performance, while brain drain creates systematic deviations requiring nuanced multi-criteria interpretation.

Methodological Innovation in Practice. These applications demonstrate sophisticated integration of:

- *Statistical Integration:* Official data combined with expert evaluations using weighted co-measurability approaches
- *Qualitative-Quantitative Synthesis:* Diverse factor types aggregated through principled methodological frameworks
- *Dynamic Benchmarking:* Cross-national comparison enabling policy intervention identification

- *Stakeholder Engagement:* International expert panels contributing to criteria definition and weight assignment

5.2 Sustainable Development and Wealth Assessment

Inclusive Wealth Index (IWI) Innovation. The UN Environment Program's Inclusive Wealth Index represents breakthrough application of metaeconomic principles by reconceptualizing national wealth as the sum of produced capital, human capital, and natural capital. This directly operationalizes the principle of multiplicity of values and demonstrates superior analytical power compared to GDP-focused approaches. Report's finding that human capital is a larger driver of wealth than produced capital is a striking example of a metaeconomic insight that traditional measures would miss. The discussion of institutional innovators (optimizers, enablers, transformers) is a strong point, as it shows the framework's versatility in different contexts. The financial stability examples (IMF's Financial Sector Assessment Program) further demonstrate institutional adoption of multi-criteria frameworks, validating the approach in a highly quantitative and risk-averse domain

Key findings validate metaeconomic insights:

- Human capital contributed 55% of inclusive wealth growth across 140 countries.
- Produced capital contributed only 32%, natural capital 13%.
- Investment in produced capital yielded lowest returns for most countries.
- Traditional metrics systematically misclassify educational investment as expenditure rather than asset building.

Policy Transformation Implications. IWI analysis shifts focus from short-term output flows to long-term asset base management, demonstrating the practical policy relevance of metaeconomic frameworks. This transition exemplifies the framework's capacity to guide strategic investment decisions and resource allocation in transitional economies seeking competitive advantage through knowledge-based strategies.

5.3 Innovation System Analysis and Institutional Assessment

Institutional Innovation Categorization. Recent applications analyze institutional innovators through three categories: optimizers (improving existing operation efficiency), enablers (developing innovative technologies and infrastructure), and transformers (creating new offerings and markets while eliminating resource dependency). Each category requires different evaluation criteria and performance metrics, demonstrating the framework's flexibility in handling diverse institutional contexts.

Multi-Level Assessment Integration. The methodology successfully integrates:

- *Innovation Quality Assessment:* Dependent on intellectual potential, professional competency, creativity, IT infrastructure, and entrepreneurship advantages
- *Policy Effectiveness Evaluation:* Different innovation policies require distinct assessment frameworks reflecting varied objectives and constraints
- *Cross-National Benchmarking:* Comparative analysis enabling identification of best practices and institutional learning opportunities

5.4 Financial System Stability and Risk Assessment

Institutional Adoption and Standardization. Multi-criteria frameworks have achieved institutional adoption in financial stability assessment through the IMF's Financial Sector Assessment Program covering 29 systemically important jurisdictions and the US Financial Stability Oversight Council's analytical framework monitoring eight vulnerability categories.

Methodological Sophistication. These applications demonstrate advanced integration of:

- *Quantitative Indicators:* Statistical measures of financial system performance and risk
- *Qualitative Assessments:* Expert judgment on institutional quality and regulatory effectiveness

- *Stress Testing*: Scenario analysis across multiple risk factors and time horizons
- *Dynamic Monitoring*: Continuous assessment enabling early warning system development

6. Critical Evaluation and Future Directions

Having demonstrated the theoretical foundations and practical applications of the metaeconomic framework, we now provide balanced critical evaluation of its strengths and limitations while identifying priority areas for future research and development.

6.1 Demonstrated Strengths and Contributions

Conceptual Clarity and Theoretical Innovation. The framework provides clear distinction between metaeconomics as methodology versus behavioral economics, resolving long-standing terminological confusion. The meta-systemic positioning offers powerful "grammar" for constructing and evaluating economic theories rather than proposing yet another behavioral model.

Practical Policy Relevance. The framework directly addresses contemporary policy challenges inadequately handled by conventional models: sustainability assessment, intellectual capital valuation, social equity measurement, and multi-stakeholder decision processes. Applications in prominent international indices demonstrate real-world utility and institutional adoption.

Methodological Sophistication. MCDA integration provides structured, transparent toolkit for operationalizing holistic economic analysis. The framework correctly identifies methodology rather than theory as the fundamental challenge in contemporary economics, offering principled solutions rather than abstract critique.

Transcendence of Paradigmatic Limitations. The framework provides formal basis for incorporating intangible assets, social utility, and dynamic value hierarchies while maintaining analytical rigor. This represents significant advancement beyond GDP-centric analysis and homo economicus assumptions.

6.2 Limitations and Critical Challenges

Operationalization and Measurement Complexity. Despite conceptual sophistication, practical operationalization faces significant challenges:

- *Weight Elicitation Problems*: Analytic Hierarchy Process suffers from inconsistency issues, rank reversal problems, and cognitive burden increasing exponentially with criteria sets
- *Aggregation Function Sensitivity*: Linear models may recommend extreme solutions while product models prove overly conservative
- *Data Quality Dependencies*: MCDA results depend entirely on performance matrix quality, with poor data leading to poor decisions regardless of methodological sophistication

Theoretical and Methodological Limitations. Metaeconomic analysis, like most MCDA, excels at description and evaluation, but it is not a predictive or explanatory model in the traditional econometric sense (Saaty & Vargas, 2012; Triantaphyllou, 2000):

- *Limited Causal Inference Capability*: Framework provides powerful descriptive and evaluative tools but weaker explanatory power for fundamental economic dynamics
- *Subjectivity in Critical Parameters*: Criteria selection and weight assignment introduce normative elements into ostensibly objective analysis
- *Method Selection Arbitrariness*: Different MCDA methods can yield different rankings, with choice often driven by convenience rather than theoretical appropriateness

Implementation and Institutional Barriers:

- *Resource and Expertise Requirements*: Sophisticated applications exceed many organizations' capabilities.
- *Political Acceptance Challenges*: Technical complexity creates communication difficulties with stakeholders and decision-makers.

- *Limited Practitioner Availability*: Shortage of skilled practitioners constrains adoption and quality control.
- *Software Limitations*: Available tools often drive methodology choice rather than problem requirements determining appropriate methods.

6.3 Future Research Priorities

Methodological Development. Priority areas for advancing the framework include:

- *Enhanced Weight Elicitation Methods*: Developing data-driven and stakeholder-consensus approaches to reduce arbitrariness in criteria weighting
- *Robust Aggregation Functions*: Creating aggregation methods that handle uncertainty, incomplete information, and conflicting stakeholder preferences.
- *Dynamic MCDA Models*: Extending static analysis to handle temporal evolution and adaptive management.
- *Integration with Advanced Analytics*: Incorporating machine learning, network analysis, and complexity science methods.

Theoretical Integration. The framework requires deeper integration with:

- *Evolutionary Economics*: Synthesizing methodological framework with evolutionary-ontological approaches to measure and track fitness of evolving economic rules.
- *Institutional Economics*: Developing explicit models of how institutional contexts affect criteria definition and weight assignment.
- *Behavioral Economics*: Incorporating psychological insights about decision-making biases and cognitive limitations in multi-criteria contexts.

Applied Research Extensions. Promising managerial application domains include:

- *Artificial Intelligence Economics*: Managing complex trade-offs in AI development and deployment.
- *Decentralized Finance*: Evaluating cryptocurrency and blockchain-based financial management systems as a roadmap for future research in the field.
- *Circular Economy Assessment*: Measuring progress toward resource efficiency and waste elimination.
- *Climate Policy Integration*: Managing transitions to sustainable energy systems with multiple competing objectives.

Empirical Validation and Testing. Critical needs include:

- *Predictive Performance Assessment*: Testing whether metaeconomic models provide superior forecasting compared to conventional approaches.
- *Cross-Cultural Validation*: Examining framework applicability across different institutional and cultural contexts.
- *Longitudinal Impact Studies*: Assessing whether MCDA-informed decisions produce better long-term outcomes.
- *Comparative Methodology Studies*: Systematic comparison of different MCDA approaches across various application domains.

6.4 Integration with Economic Theory Development

Bridging Methodology and Theory. Future development should explore how metaeconomic methodology can inform fundamental economic theory construction. Rather than remaining purely methodological, the framework could contribute to:

- *New Theoretical Insights*: Using MCDA to identify previously unrecognized relationships and patterns in complex economic systems.
- *Theory Testing and Validation*: Developing criteria for evaluating competing theoretical explanations using multi-criteria frameworks.
- *Policy Theory Development*: Creating more sophisticated models of how policy interventions affect multiple objectives simultaneously.

Institutional and Governance Applications. The framework shows particular promise for:

- *Democratic Decision-Making*: Enhancing citizen participation in complex policy choices through structured multi-criteria approaches.
- *International Cooperation*: Providing common analytical frameworks for multilateral institutions addressing global challenges.
- *Corporate Strategy*: Integrating stakeholder capitalism approaches with rigorous analytical methods.
- *Regulatory Design*: Developing regulation that efficiently balances multiple social objectives.

7. Conclusion

This analysis establishes metaeconomics as a systematic methodological framework addressing fundamental limitations in neoclassical economic analysis while providing practical tools for complex decision-making in contemporary policy and management contexts. The framework's theoretical foundations in critical realism and hierarchical epistemology justify its operational toolkit of MCDA methods.

Key Contributions. The metaeconomic framework makes three primary contributions to economic methodology:

1. *Philosophical Foundation*: Providing explicit ontological and epistemological grounding for economic analysis that handles complexity, emergence, and value pluralism.
2. *Methodological Innovation*: Integrating MCDA methods with economic analysis to create structured approaches for multi-objective optimization and stakeholder engagement.
3. *Empirical Validation*: Demonstrating practical relevance through successful applications in global competitiveness assessment, sustainable development evaluation, and innovation policy analysis.

Practical Significance. The framework addresses critical challenges in contemporary economic management: measuring intangible assets, integrating sustainability considerations, handling multi-stakeholder objectives, and managing complex adaptive systems. Applications in prominent international indices demonstrate institutional adoption and policy relevance.

Future Development. While limitations exist in operationalization complexity and theoretical integration, the framework provides a foundation for advancing economic methodology toward greater realism and practical utility. Priority research areas include enhanced weight elicitation methods, dynamic modeling capabilities, and integration with emerging fields like artificial intelligence economics and decentralized finance.

The metaeconomic framework represents a significant advancement in economic methodology, providing both theoretical sophistication and practical utility for addressing the complex, multi-dimensional challenges of 21st-century economic management. Its continued development promises to enhance both scholarly understanding and policy effectiveness in an increasingly complex global economy.

References

Belton, V., Stewart, T. J., 2002. *Multiple Criteria Decision Analysis: An Integrated Approach*. Kluwer Academic Publishers.

Bilbao-Osorio, B., et al. 2014. *The Global Information Technology Report: Rewards and risks of big data; ICTs for inclusive growth*. 2015. INSEAD-World Economic Forum.

Buračas, A. (1968). O štrukturnosti metodologie a o socialnych funkciach ekonomickej teorii. *Ekonomický časopis*, July.

Buračas A., Zelvys R., Starkevičiute M., 2025. *Innovations intellectuelles et compétences: Approche multicritères*. Éditions Notre Savoir; *Innovazioni e competenze intellettuali: Approccio a criteri multipli*. Edizioni Sapienza. ISBN; *Inovações e competências intelectuais: Abordagem de critérios múltiplos*. Edicoes Nossa Conhecimento; *Innowacje i kompetencje intelektualne: Podejście wielokryterialne*. Wydawnictwo Nasza Wiedza; *Intellektuelle Innovationen und Kompetenzen: Ansatz mit mehreren Kriterien*. Verlag Unser Wissen.

Buracas, A., Rutkauskas, A.V., Starkevičiute, M. 2021. *Universal Sustainability: Metaeconomic Issues*. Generis.

Crosser, P. K. 1974. *Prolegomena to All Future Metaeconomics*. Saint Louis.

Dopfer, K., Foster, J., Potts, J. 2005. *Micro-Meso-Macro*. Available at: <https://ssrn.com/abstract=721599> [Accessed June 25, 2025].

Figueira, J., Greco, S., & Ehrgott, M. (eds), 2016. *Multiple Criteria Decision Analysis: State of the Art Surveys* (2nd ed.). Springer.

Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development (2020-25). Available at: <https://unstats.un.org/sdgs/indicators/indicators-list/> [Accessed June 20, 2025].

The Global Innovation Index: 2024. INSEAD- Johnson Cornell Univ.-WIPO. Available at: www.wipo.int/web-publications/global-innovation-index-2024/assets/67729/20000%20Global%20Innovation%20Index%202024_WEB3lite.pdf [Accessed Aug 25, 2025].

Greco, S., Ehrgott, M., & Figueira, J. R. (eds), 2016. *Multiple Criteria Decision Analysis*. Springer.

The Inclusive Wealth Report, 2024. Special Issue on Social Emotional Capital Accounts (SECA). UNESCO MGIEP. Available at: [https://d1c337161ud3pr.cloudfront.net/files%2F58d378f8-de31-4522-bb12-fe289b13006e_SECA%20\(Single%20page\).pdf](https://d1c337161ud3pr.cloudfront.net/files%2F58d378f8-de31-4522-bb12-fe289b13006e_SECA%20(Single%20page).pdf) [Accessed Aug. 25, 2025].

An Introductory Guide to Multi-Criteria Decision Analysis 2025. Available at: <https://analysisfunction.civilservice.gov.uk/policy-store/an-introductory-guide-to-mcda> [Accessed July 14, 2025].

Kickert, W. J. M., & Van Gigch, J. P., 1979. A Metasystem Approach to Organizational Decision-making. *Management Science*, 25 (12), 1217-1231.

Kim B.S. a/o. 2022. *A Survey on Analytical Models for dynamic resource management in wireless body area networks*. Ad Hoc Networks, 135. Available at: <https://www.sciencedirect.com/topics/engineering/multi-criteria-decision-making>. [Accessed June 25, 2025].

Lynne G.D. 2020. *Metaeconomics: Tempering Excessive Greed*. N.Y., Palgrave Advances in Behavioral Economics.

Lynne G.D., Czap N.V., 2024. Towards Dual Interest Theory in Metaeconomics. *Journal of Interdisciplinary Economics*, 36(1).

Menger, K., 1954. The Logic of Laws of Return: A Study in Meta-Economics. In: O. Morgenstern (ed.), *Economic Activity Analysis*. J.Wiley.

Monteiro, L. F., Evans, P.A. L. (eds), 2025. *The Global Talent Competitiveness Index. Talent and Resilience: Navigating an Era of Disruption*. INSEAD, Descartes Institute for the Future & Human Capital Leadership Institute. Available at: insead.edu/global-talent-competitiveness-index [Accessed Aug. 30, 2025].

Oliveira M.D., Mataloto I. & Kanavos P., 2019. Multi-criteria decision analysis for health technology assessment: addressing methodological challenges to improve the state of the art. *The European Journal of Health Economics*, 20.

Parkinson, M. 2016. *Meta-economics: A New Vision*. Policy Press.

Roy, B. 1996. *Multicriteria Methodology for Decision Aiding*. Kluwer Acad.Publ. Berlin.

Saaty, T. L., Vargas, L. G. 2012. *Models, Methods, Concepts & Applications of the Analytic Hierarchy Process*. Springer.

Saarikoski H. et al, 2016. Multi-Criteria Decision Analysis and Cost-Benefit Analysis: Comparing alternative frameworks for integrated valuation of ecosystem services. *Ecosystem Services*, 22 (B), 238-249.

Schumacher, E. F., 1973. *Small Is Beautiful: A Study of Economics As If People Mattered*. Vintage Books, London.

Social Multi-Criteria Evaluation of Policy Options. Available at: https://knowledge4policy.ec.europa.eu/projects-activities/social-multi-criteria-evaluation-policy-options_en [Accessed July 10, 2025].

Stiglitz, J. E., Sen, A., & Fitoussi, J. P., 2009. *Report by the Commission on the Measurement of Economic Performance and Social Progress*.

Triantaphyllou, E. 2000. *Multi-Criteria Decision Making Methods: A Comparative Study*. Kluwer Academic Publishers. *Use of Multi-Criteria Decision Analysis in Options Appraisal of Economic Cases* 2024. Available at: <https://www.gov.uk/government/publications/green-book-supplementary-guidance-multi-criteria-decision-analysis/use-of-multi-criteria-decision-analysis-in-options-appraisal-of-economic-cases> [Accessed July 10, 2025].

Yoon, K. P., & Hwang, C. L., 1995. *Multiple Attribute Decision Making: An Introduction*. SAGE Publications.

The World Competitiveness Ranking 2025. Available at: <https://www.imd.org/centers/wcc/world-competitiveness-center/rankings/world-competitiveness-ranking/methodology/> [Accessed Aug. 10, 2025].

Zavadskas, E. K., Turskis, K. 2011. Multiple Criteria Decision Making (MCDM) Methods in Economics: an overview. *Technological and Economic Development of Economy*, 17(2), 397-427.

Zeleny, M., 1982. *Multiple Criteria Decision Making*. McGraw-Hill.

Zsolnai, L., The importance of meta-economics In H. Opdebeeck. 2013 (ed.), *Responsible economics. E.F. Schumacher and his legacy for the 21st century*. Oxford: P Lang Academic Publishers.