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Abstract 

The different ways of assessing risk are numerous in the financial literature. Regulation has made 

it a function of Value-at-Risk. Recalling the inadequacy of current approaches, the recent crisis is 

encouraging us to have tools giving more information on losses and gains. In recent years, modern 

statistics have developed a series of probabilistic tools that today have direct applications in 

finance. This is particularly the case for the use of the order three and four moments in the Valut-

at-Risk calculation. For the study of leptokurticity, or non-Gaussianity, and the asymmetry of the 

distribution of yields. This work aims to apply this technique to types of financial assets including 

CAC40 member companies. The analysis of the regulation and its evolution following the 

economic crisis of 2008 make it possible to define the stakes and the difficulty of the measurement 

of the risks. The presentation of the concept of moments of order three and four exhibits their 

properties and shows that they bring more information on the tails of distributions than do the 

classical moments. The distribution of the returns of these securities makes it possible to show that 

this is a case of financial assets whose behavior is far from a normal distribution and thus requiring 

special techniques. Finally, the empirical analysis of CAC40 financial securities over a long period 

shows the benefit of order three and four moments in stalling laws and building more robust 

quantile estimators than those built from a law. Normal or by retaining historical distributions.  
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1. Introduction 

The theory of finance concerns the study of the prices of financial products and more 

precisely their temporal evolutions. A financial model is most often based on a 

representation of the prices of financial assets (or interest rate levels). Such 

representation can be sought from the perspective of a better understanding of financial 

markets, or in a prospective development of tools to improve financial management: risk 

management, asset allocation, creation of new products financial. 

 

Financial modeling always balances the adequacy of observations in financial markets 

with its convenience of use. Modeling that seeks to produce all the statistical properties 

of observations generally leads to a complicated model that often becomes difficult to 

use, theoretical calculations being generally difficult to conduct. On the other hand, 

excessive simplification of the models makes it possible to carry out numerous 

calculations, but at the expense of the efficiency of taking into account the structure of 

the returns. In this paper we simulate the Value-at-Risk based on the Monte Carlo 

simulation and then calculate the Gaussian Value-at-Risk with different levels of 

quantiles, and then in the end we move to Value-at-Risk according to approaches 

(Cornish Fisher, Gram Charlier, and Jonson) who take into consideration the three and 

four moments of the distribution. We analyze the main statistical properties of the 

financial series and we propose a coherent modeling of most of these properties. 

 

So is the VaR (concept of ruin) used in insurance and then in the trading rooms (JP 

Morgan - RiskMetrics) she played a very important role in the analysis of risk and 

financial reserves. The sophistication of market instruments and their aggregation into 

more complex portfolios (arbitrage, hedging, multiple asset classes) has stimulated 

research to improve this tool. It has become indispensable for establishments with 

complex activities, and the regulator has made it a key element in loss and profile 

evaluation models. VaR has been criticized for its inadequacies (variety of results 

according to the laws used, information on the risk very different according to the level 

of confidence retained, non-additivity). The crisis also highlighted new or insufficiently 

formalized risks (liquidity, model risk, endogeneity, systemic risk). It also calls for a 

better understanding of the behavior of assets in the extremities (maximum loss or gain), 

for this techniques were developed from order statistics in order to build estimators that 

better take into account the maxima information in distributions. A recourse to the 

moments of order three and four proves useful for the calculation of a VaR which would 

contain more information on the realizations of the profits and losses. 

 

Thus, starting from the standard approach of Bollerslev and Zhang (2003), we will 

include in these models of asset valuation higher order moments (moments of order three 

and four). Indeed, we will be inspired by the theoretical justifications of Jurczenko and 

Maillet (2006) to introduce in the calculation models of the VaR, the moments of orders 

three and four. To better exploit this information provided by the proposed extensions on 

classical models of valuation with higher order moments (see Jurczenko and Maillet, 

2006), Several measures of risk assessment of an asset from homogeneous distributions 

proposed in the literature of (see Back and Weigend, 1997 and Giot and Laurent, 2004) 

will be used below to compare different approaches. These are the Gaussian VaR 

(characterized by the mean and standard deviation of the security's returns), the Gram-
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Charlier VaR (the asset returns follow a GC distribution), the VaR-Jonson (asset returns 

follow distributions from Jonson) and VaR-Cornish-Fisher (asset returns follow Cornish 

Fisher distributions). Thus, to compare and analyze the reliability of the various 

proposed alternative VaR measures, several backtesting procedures will also be 

implemented on the basis of the most used tests. We will use the failure proportion test 

(Kupiec) which is based on the estimated number of VaR exceedances estimated by the 

model. We will also use the Christoffersen confidence interval test. 

 

To complete our project we use two titles of the CAC40: Total and Bouygues, chosen for 

their characteristics different from the moments of order three and four. In the first part, 

we will study the stylized facts that make it possible to identify the problem of non-

normality of autocorrelation, or of volatility. When the second part is devoted to the 

presentation of VaR. And finally the last part is the subject of a study where modeling 

(empirical applications), for a period ranging from 02/01/2008 to 28/12/2013. 

 

2. Value-at-Risk and Modeling of the Three and Fourth Moments of Financial 

Returns Distributions 

 

By definition, VaR is the maximum loss that a portfolio manager may experience during 

a certain period of time with a given probability. Assuming that this probability is 95%, 

the margin of error for this maximum loss is only 5% if the cash flow distribution of a 

portfolio obeys a normal distribution. Suppose also that the random variable X 

represents the value of the portfolio, with X ~ N (μ, σ). The random variable X can be 

rewritten in terms of standard normal variable ε centered reduced: 

 

Pr(    < VaR) = p                                                               (1) 

 

With    = Ln 
    

  
   the yield of the asset on the horizon h, and    the value of the 

index at time t. By constriction this VaR is a generally negative number. The ∅  (P) is the 

quantile function of the normal centered reduced law, with the known value of p and h, 

the VaR can also be written: 

 

VaR =    + σ     (P)                                                    (2) 

 

Where     is the quantile level and σ  is the standard deviation of yields on the horizon 

h, and    (P) the quantile function of the reduced normal centered equation. 

The value of the VaR reflects the amount of the loss that the investor could not exceed 

with a certain probability over a specific time horizon. This approximation does not take 

into account extreme events that may occur that could lead to more severe losses. This 

leads the investor to make biased decisions based on VaR by underestimating the losses 

that can be avoided by using other estimation methods. 

 

The extreme events produce irregularities in the yields, but also breaks that are reflected 

in their distributions by asymmetry and leptocurticity. To account for these phenomena 

we retain in this study the Gram-Charlier, Cornish-Fisher and Johnson methods, which 

use the first four moments of returns, and provide the approximate quantities of the 
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unknown distribution of a portfolio return. . Using the VaR formula, this quantity 

approximately    (P), the quantile function of the yield distribution. 

 

2.1. Gram-Charlier 

 

The formula of VaR in equation (1) requires the quantile function for the approximate 

Gram-Charlier density. Which can be inverted numerically to calculate the VaR. the 

Gram-Charlier approximation is given by: 

 

   ( P;        =   -
  

 
            

      

  
[                     (3) 

 

whether      ( z ;        =    
  

 
        

      

  
              (z) 

 

Where    and    are respectively the standard normal distribution and density function 

evaluated at k,           is the skewness coefficient and          is the kurtosis 

coefficient. The VaR of Gram-Charlier is then calculated as follows: 

 

     =   + σ    
                                                                               (4) 

 

2.2.  Cornish Fisher 

 

The Cornish-Fisher approach (see, for example, Zangari [1996]) leads to the following 

approximation: 

 

      
  
   

 
   

  
     
  

       
   

     
  

  
 
 

 

Where w_α is the corrected percentile of the distribution at the α threshold,    = 

  
       where α is the quantile level,   

      the quantile function of the normal 

distribution centered reduced,    the coefficient of kurtosis and    the coefficient of 

skewness. The Cornish-Fisher VaR is written as follows: 

 

         μ     
  
   

 
   

  
     
  

       
   

     
  

  
  σ 

With μ the mean and σ the standard deviation of the distribution, so the Fisher VaR can 

write as follows: 

 

         μ      σ 

 

For skewness distributions below zero or negative and where the kurtosis is greater than 

three, the VaR is shifted to the left relative to the Gaussian VaR and thus allows to take 

into account the deviations from "normality". By hypothesis this VaR correctly 

represents the risk if    is close to zero, and if    is close to three. If these two 

conditions are not satisfied, the result of the Cornish-Fisher approximation will be less 

relevant. The computation of VaR with the Cornich Fisher approach requires the 
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knowledge of    
      by a dichotomous procedure to obtain the probability close to the 

quantile value. 

 

The approximate quantile functions generated by the Cornish-Fisher approach do not 

always have desirable properties. It does not always generate a monotonic function for 

all pairs of asymmetry and flattening. Outside this set, the Cornish-Fisher expansion 

provides non-monotone quantiles in the tail of the distributions. 

 

2.3.  Johnson approch 

 

We present this approach of Johnson from Simonato's method (2010). This approach of 

Johnson is presented by Simonato (2010) allows to use the first four moments as main 

input within a model of VaR. 

 

A continuous random variable z with an unknown distribution can be approximated by 

the methodology proposed by Johnson (1949) from a set of "normalized" translations. 

This transforms the continuous variable z into a normal standard variable y and has the 

following general form: 

 

        
   

 
  

 

Where a and b are the shape parameters, c is a location parameter, d is a scale parameter 

and g (.) Does a function whose form defines the four families of the distributions 

constitute the Johnson system.  

 

 (μ) = 

 
 
 

 
 

   μ 

   μ    μ    

    
μ

  μ
  

μ

  

 

They correspond respectively to the log-normal family, the unbounded family, the 

bounded family, and the normal family. 

 

Thus, the process of using the Johnson system comes down to identifying the values of 

a, b, c and d that are associated with the moments of the distribution. 

Hill et al. (1976) propose an algorithm for choosing the appropriate family and the 

parameter values required to approximate this unknown distribution when we know the 

first four moments of the function. 

 

Johnson's random variable can express from the inverse of the previous normalized 

translation: 

          
   

 
 , 
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whither       μ    

 μ

  μ    μ   

       μ 
μ

  

 

Which in the order correspond to the log-normal family, the unbounded family, the 

bounded family, and the normal family. 

The quantities required for the VaR formulas are obtained from the asymmetry 

coefficient and the flattening coefficient of the standardized yield distribution. Using 

centered and reduced parameters within the Hill algorithm, we find the values of the 

parameters a, b, c and d. Once this stage is completed, it is then possible to measure the 

risk of this distribution. 

 

Digital applications and discussions 

 

We illustrate the usefulness of taking into account the three and four moments in the 

calculation of VaR from the series of assets Total and Bouygues over a daily period from 

02/01/2008 to 28/12/2013 or 1563 observations. These two aspects are chosen because 

of their different characteristics of moments. 

 

Descriptive analyzes and preliminary tests 

 

The first graph shows the logarithmic changes in the returns of the Total and Bouygues 

shares. 

 

 

 
Figure 1 - Evolution of TOTAL and BOUYGUES yields 
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They exhibit non-stationarity confirmed by unit root tests. To stationarize our series, we 

retain the first differences in the log of prices that are approximations of the financial 

returns of our selected securities. 

 

The assets withheld fell sharply following the 2008 crisis. This decline, the largest ever, 

is the result of a combination of negative performance, unitholder disinvestments, and 

liquidation of units. The portfolio manager makes purchases and sales on the assumption 

that changes in asset prices are composed of a market trend and a specific asset factor. It 

hedges its portfolios by buying undervalued assets and selling overvalued assets. 

The descriptive statistics in Table 1 indicate that yields are volatile, leptokuretic and 

asymmetric: the distributions of returns are not Gaussian distributions. The analyzes of 

the stationary price series reveal other characteristics of the financial series: no 

autocorrelation of the returns but autocorrelation of the yields squared, asymmetry and 

leptokurticity of the distribution of the returns, clusters of volatility. In addition to the 

highlighting of ARCH effects, GARCH the application of the BDS test rejects the 

hypothesis of linear structures. 

 

These shortcomings of linear models lead to consider a nonlinear approach to the 

process generating series of returns. To justify this choice we retain tests that make it 

possible to test if a series is i.i.d. The test results are given in the appendices for different 

epsilon values and for different dimensions. 

 

      Statistics                     Total             Bouygues 

Average 0.03527903 -0.000420461 

Standard deviation 0.9996982 0.02478897 

Min -1 -0.1287917 

Max 1 0.1566574 

Skewness -0.070602 0.4575874 

Kurtosis 1.004985 8.315181 

Table1- Descriptive Daily Performance Statistic 

 

The moments of order three and four of the two returns are different: the asymmetry is 

less than o for the title Total, while it is greater than o for the title Bouygues. The 

Bouygues fruetons are more important than Total's. These differences explain the choice 

of these titles for this study. 

 

Tests               Total    Bouygues 

Autocorrélation 3.11%       3.11% 

Autocorrélation au carré 21.12%       21.2% 

Jarque–Bera (p-value) 2.2e-16%       2.2e-16% 
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Ljung–Box (p-value)      0.3486 %       0.1559 % 

Ljung–Box squared returns 

 (p-value) 
0.0%       2.2e-16% 

Table 2-Statistical Tests of JB 

 

In general, autocorrelation is used to characterize linear dependencies in residual series 

(time series corrected for trend and seasonality). Indeed, the trend and the season are 

deterministic components. Moreover, if the studied series has characteristics that evolve 

over time, it can be difficult to estimate its statistical properties because one generally 

has only one realization of the process which is not enough to make the estimate. 

However, it is very useful to understand how the empirical autocorrelation of a raw 

series with a trend and / or seasonality will look. 

 

3. Empirical Modeling of VaR 

 

In order to take into account the preceding characteristics of our series of yields, we 

propose to model their distributions using the approximations presented previously 

(Gram Charlier, the extension of Cornish Fisher, and Jonson). 

The graphs below represent the empirical distribution of returns for each asset, with the 

adjustment of the normal distribution of the same mean and standard deviation. 
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These graphs clearly show the problem of leptokurticity at the tails of distributions. To 

compare our different approximations we use the values of the VaR calculated according 

to the different approaches. 

 

The quantiles of 1%, 5% and 10% are maximum losses at 99%, 95% and 90% 

probability respectively. The minus sign means a loss (left part of the distribution). On 

the other hand, the quantiles of the 90%, 95% and 99% are maximum gains at respective 

probabilities of 10%, 0.5% and 0.1%. The positive value means a gain (right part of 

distribution). 

 

    R.Total     R.Bouygues   

  Normale GC CF Normale GC CF 

VaR(1%) 0,04219 -0,212 -0,06 -0,0366 -0,555 -0,61 

VaR(5%) -0,02976 -0,13252 
-

0,0276 
-0,02585 24,67103 0,099887 

VaR(10%) -0,0231 0,022471 
-

0,0147 
-0,02011 16,49001 0,240384 

VaR(90%) 0,023609 0,02295 0,0151 0,020324 18,1094 -0,216 

VaR(95%) 0,030236 0,13265 0,0281 0,0260568 25,0964 -0,035 

VaR(99%) 0,042665 -0,214 0,0692 0,036809 -1,579 0,7676 

       Table 3 - Normal VaR, GC and CF at 1%, 5%, 10%, 90%, 95%, and 99% 

 

VaR Jonson Loi Total Bouygues 

  Normale -13.009 -879.34 

1% Log-Normale -6.718 -85.668 

 Borné -23.9 -119 

  Non Borné 3.142 389.792 

  Normale -16.188 -1035.6 
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5% Log-Normale -5.399 -73.724 

 Borné -12.77 -96.5 

  Non Borné 5.391 473.889 

  Normale -18.555 -104.88 

10% Log-Normale -4.711 -72.881 

 Borné -9.49 -95 

  Non Borné 6.918 480.892 

  Normale -18.607 -1160 

90% Log-Normale -4.697 -66.530 

 Borné -9.44 -84 

  Non Borné 6.951 539.681 

  Normale -16.228 -1180.1 

95% Log-Normale -5.3859 -65.512 

 Borné -12.7 -82.32 

  Non Borné 5.4175 550.230 

  Normale -13.038 -1220.2 

99% Log-Normale -6.703 -63.577 

 Borné -23.7 -79.1 

  Non Borné 3.163 571.267 

Table 4 - Jonson VaR under different families at 1%, 5%, 10%, 90%, 95% and 99% 

 

VaR approaches based on the Cornish-Fisher, Gram Charlier, and Jonson developments 

aim at modifying the multiple associated with the normal distribution in order to 

integrate the third and fourth moments of the yield distribution. These approaches make 

it possible to obtain an approximate analytical expression of the quantile of a distribution 

as a function of its moments. 

 

By limiting the three approaches mentioned above to its first terms, we obtain an 

analytic expression of the VaR involving the expectation μ, the standard deviation σ, the 

Skewness and the Kurtosis of the returns. 

 

The tables below show the degrees of asymmetry, the kurtosis levels and the w_α 

statistic calculated from the above equations (Gram Charlier, Cornish-Fisher, and Jonson 

approximations) for the 1%, 5% and 5% thresholds. %, 10%, 90%, 95% and 99%.  

As can be seen from the tables, excess kurtosis slightly dominates the asymmetry in the 

calculation of the Cornish-Fisher expansion. By using the 1% threshold as a multiple in 

the Gaussian VaR equation, the risk of these assets is greatly underestimated. 
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We also note that the statistics (quantile w_α) of all the thresholds of the Jonson 

approach are very weak compared to the two previous ones, explained by the dynamism 

of this approach. 

 

The estimate of losses with VaR Gram Charlier is generally close to the VaR Cornish 

Fisher. The Gaussian VaR gives losses greater than those of the Cornish Fisher VaR and 

the VaR Gram Charlier, this is valid for both titles. Cornish-Fisher VaR results in results 

far removed from Gaussian VaR and overstates losses in all cases. 

 

The results are presented by quantiles (see appendices), for each model. Each asset can 

be considered as an example of how VaR calculations compare from one model to 

another. 

 

Quantiles of 1%, 5% and 10% 

Quantiles of 1%, 5%, and 10% are maximum losses at 99%, 95%, and 90% probabilities. 

The minus sign means a loss (left part of the distribution). We grouped the three models 

(Gaussian, Gram Charlier and Cornish Fisher) under different loss thresholds in the same 

table, to make our comparison. The differences between the results of the models at the 

different thresholds are reduced, as regards the securities whose distributions are more or 

less symmetrical. 

 

Quantiles of 90%, 95% and 99% 

For the same purpose as the previous table, but this time we are talking about gains 

rather than losses. The quantiles of 90%, 95% and 99% are maximum gains at 

probabilities of 10%, 5% and 1%. The plus sign means a gain (right side of the 

distribution). 

 

Again, the VaR Gram Carlier and VaR Cornich Fisher are close. 

Gaussian VaR gives gains lower than those obtained with Gram Carlier VaR, and 

Cornich Fisher VaR in most cases and more particularly with highly asymmetric 

distributions. The Cornish Fisher VaR gives even greater gains than those estimated with 

Gaussian VaR. The differences are larger for the 99 percent, 95 percent and 90 percent 

quantile calculations. Same observation on the left and right tails of the distribution: the 

gaps are accentuated while moving away from the center. 

 

VaR Jonson: Quantiles of 1%, 5% and 10% 

Quantiles of 1%, 5% and 10% are maximum losses at 90%, 95% and 99% probabilities. 

The minus sign means a loss (left part of the distribution). The VaR Jonson calculated 

according to the families of the following laws: Normal family, Log-Normal family, 

Borné family, and non-Borne family. 

 

The Jonson VaR calculated according to the log-normal family and the Cornish Fisher 

VaR are close. The Jonson VaR with the Borné family results in higher earnings than the 

Jonson VaR of the Non-Borne family in most cases. In general, the results are closer in 

the case of the Jonson VaR with the Borné family and the Jonson VaR with the Normal 

family (distributions whose shape parameters are close to zero). 

VaR Jonson: Quantiles of 90%, 95% and 99% 
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The quantile of 90%, 95% and 99% are maximum gains at probabilities of 10%, 5% and 

1%. The plus sign means a gain (right side of the distribution). In the calculation of the 

VaR according to the Jonson models, the differences are larger for the calculations 

performed at the different quantile levels. Same observation on the left and right tails of 

the distribution: the gaps are accentuated while moving away from the center. 

 

VaR with Moments of order three and four at the threshold of 5% 

 

While keeping our respective series as such, we assigned different values to the 

skewness and kurtosis parameters, in order to see the impact of this change on the 

calculation of VaR. The calculation of VaR for Total and Bouygues yields is made at the 

5% threshold. 

 

In the tables (8.1 and 8.2) below we see the results on the different models, we clearly 

see that, the further away from the position of normality is to say skewness = 0 and 

kurtosis = 3, plus the risks become uncontrollable. 

 

Skewness   -1     0 

  

1   

Kurtosis 

VaR 

GC 

VaR 

CF 

VaR 

J.log              

VaR 

GC 

VaR 

CF 

VaR 

J.log  

VaR 

GC 

VaR 

CF 

VaR 

J.log  

0 

1,5 

3 

4,5 

5,5 

-

0,425 

-

0,338 

-

0,251 

-

0,165 

-

0,107 

-

0,025 

-

0,025 

-

0,024 

-

0,024 

-

0,023 

0,026 

1,636 

-

25,18 

-

9,498 

-

8,532 

-

0,406 

-

0,320 

-

0,233 

-

0,147 

-

0,089 

-

0,030 

-

0,030 

-

0,029 

-

0,029 

-

0,029 

0,419 

1,738 

-

5,018 

-

4,485 

-

4,568 

-

0,389 

-

0,302 

-

0,216 

-

0,129 

-

0,072 

-0,036 

-0,035 

-0,035 

-

0,0342 

-0,034 

1,003 

-0,794 

-0,962 

-1,326 

-1,575 

Table 7.1- Total VaR: for moments 3 and 4 fixed 
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-
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-
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8 

-

0,279

3 

-

0,02

2 

-

0,02

2 

-

0,02

1 

-

0,02

1 

-

0,9993 
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-
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7,5822 

-

0,68

8 

-

0,54

2 

-

0,39
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0,24
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5 
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0,02

5 

0,0007

4 

12,647

6 

-

4,3949 

-

3,9087 

-

3,9762 

-

0,658

3 

-

0,511

8 

-

0,365

4 

-

0,218

9 

-

0,03

1 

-

0,03

1 

-0,03 

-0,03 

-

0,02

9 

1,00088

7 

-

0,56546 

-

0,70513 

-

1,01969 

-

1,23575 
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-

0,181

6 

-0,02 -

0,15

1 

-

0,02

5 

-

0,121

3 

Table 7.2- Bouygues VaR: for moments 3 and 4 fixed 

The color values are the results of the different models in accordance with the criteria of 

normality. 

 

Gaussian VaR is the one that gives the lowest loss estimates, especially for the most 

extreme quantiles, except where the distributions are symmetrical (shape parameter close 

to zero). 

 

The development of Cornish Fisher is not satisfactory. Cornish Fisher VaR 

systematically gives higher estimates of losses and gains than Gram Charlier VaR and 

VaR calculated using the Jonson models. Jonson VaR models are generally close to each 

other. In a word we can say the approach developed from extension of Jonson is close to 

reality.  

 

Backtesting 

 

The classic approach used by many authors is to provide VaR forecasts taking into 

account the long position, ie for negative returns. However, the forecast capacity of the 

models that are proposed must be evaluated in long position but also in short position. 

Actors participating in the financial markets are not only curious to know the maximum 

loss that may be caused by a fall in the price of the assets they hold, but they can, in a 

short position, worry about the maximum increase in the price of an asset that they 

intend to acquire. We present the results of backtesting tests in short and long positions, 

for conditional and unconditional coverage, both in the sample and out of the sample. 

 

Rather than compare the calculations of a model to the realizations, we make the 

decision to proceed by simulation by generating a quantity of scenarios as important as 

desired. We implicitly assume that the Jonson approach computed according to the log-

normal law family is the true model because it is the one that uses the most information 

about the distribution tails. We then measure the errors that other methods of calculating 

VaR produce. If these calculation methods generate significant errors, this will validate 

the relative contribution of the moments of order 3 and 4. 

 

In this backtest, we will test the validity of the VaR levels computed above by simulating 

data in the law of each title estimated through the three- and four-order moments and 

calculating the number of times, on average, where the VaR are exceeded. The standard 

deviation of these overshoot numbers is also calculated. 

 

We produce N = 1000 data for each asset and calculate the average values of the 

exceedances and the corresponding standard deviations. 
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These analyzes are performed for quantiles of 1%, 5%, 10%, 90%, 95% and 99% 

respectively. 

 

 Backtesting Application   

 

The tables below show, by quantile, the mean and standard deviation of the number of 

VaR exceedances specified for each model. 

Surcharge for quantile of 5% 

Action VaR Gaussienne VaR G. Charlier VaR C. Fisher VaR Jonson 

  Average S.Dev Average S.Dev Average S.Dev Average S.Dev 

Total  0,505 0,49997 0,562 0,4961 0,505 0,4999 0 0 

B&Y 0,505 0,49997 1 0 0,552 0,4972 0 0 

Table-8.1: Comparative table of VaR at the 5% threshold 

 

Gaussian VaR underestimates or overestimates losses depending on the case. Losses are 

generally overestimated in the case of the Bouygues share, whose distribution is highly 

skewed. 

The development of Cornish Fisher generally overestimates losses (overruns often 

greater than 0.5). 

NB: By construction of the simulation, the number of overruns for the Jonson VaR is 

zero. This is only a numerical consequence of the simulation, so we notice that this 

model has not recorded any overruns. 

 

Surcharge for quantile of 95% 

Action VaR Normale VaR G. Charlier VaR C. Fisher VaR Jonson 

  Average S.Dev Average S.Dev Average S.Dev Average S.Dev 

Total  0,528 0,526 0,562 0,49614 0,527 0,49927 0 0 

B&Y 0,49921 0,499 1 0 0,5 0,5 0 0 

Table-8.2: Comparative table of VaR at the 95% threshold 

 

Gaussian VaR most often overestimates earnings (overruns often less than 0.5). The 

results are more in line with the true model for the most symmetric distribution (Total 

case in particular). 

The Cornish Fisher VaR gives unsatisfactory results with overruns sometimes 

significantly higher or lower than the expected level meaning alternatively 

underestimation or overestimation of earnings except for Total at a more or less 

symmetrical distribution. 

The overflow tables for quantile residues are listed in the Appendices. 

  

Gaussian VaR model error is important, leading in most cases to underestimate losses 

and overestimate gains. The backtest also leads to the rejection of VaR estimates made 

from the Cornish Fisher development as this model tends to overestimate losses. 
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4. Conclusion 

 

This research work has focused on many elements that come into play when designing 

and evaluating a risk measure in finance. The crisis reminded us of a simple teaching but 

that the habit of prosperity had managed to conceal: quick and safe enrichment does not 

exist. Growth in the value of goods is limited by time and risk. 

 

Value-at-Risk (VaR) is commonly used by regulators and practitioners to manage 

exposures to market risks. In the different sections, we studied the performance of 

different methodologies used to measure VaR. In this way we have found that among 

our different methodologies, the approach using the normal law is the least accurate and 

without any surprise. Applied research has developed formulas to compensate for the 

inability of Gaussian VaR to adapt to the asymmetric distribution of returns on financial 

assets. Notably, the Gram Charlier method, the development of Cornish Fisher and the 

extension of Jonson are corrections of the Gaussian VaR formula of introducing kurtosis 

and skewness into its expression. 

 

Considering it necessary to identify a model that adapts correctly to the shape of the tails 

of distributions, we have exploited the properties of tools developed by modern statistics, 

the moments of order three and four. Their properties make it possible to better capture 

information on extreme values. The estimation of the models makes it possible to build a 

more robust indicator of the VaR. It is a Parametric Jonson VaR set on the log-normal 

family that has four parameters. 

 

The use of Johnson's methodology with the third and fourth order moments manages to 

better measure the risk than the normal law in general. These results are consistent with 

the literature and demonstrate the relevance of using it rather than the normal law. 

 In addition, several backtests show that: Jonson VaR is a more accurate model than 

Gaussian VaR and gives results that are both fairer and more stable than the Cornish 

Fisher VaR and the Grlier Charlier VaR. The VaR Jonson is therefore a great progress. 

The calculation of the VaR is then very theoretical and the real losses are higher than 

expected. Taking into account the disappearance of the market in the VaR models would 

thus constitute a significant progress. 
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